TH4B-1

OBSERVATIONS OF CHAOS IN MICROWAVE CIRCUITS

Roger Kaul

U. S. Army Research Laboratory
2800 Powder Mill Road
Adelphi, MD 20783 USA
rkaul@arl.mil or r.kaul@ieee.org

ABSTRACT

This paper summarizes observations of chaotic
behavior in some microwave circuits that have been
reported over the last 10 years. Also, it extends re-
sults previously reported for a PIN diode limiter in
order to identify the nonlinearities in the diode that
allow for chaotic behavior. Further knowledge of
chaotic microwave parameters will allow system
designers to make use of these properties in future
applications.

INTRODUCTION

Chaotic techniques have potential for application in
microwave communication and radar systems. In com-
munication systems, discrete data can be sent without
the need for digital circuitry by direct control of the oscil-
lator (completely analog). In phased-array radar systems,
the beam can be scanned without the use of phase shifters.
These chaotic techniques would surely affect system
designs such as local area networks and small phased-
array radars.

Experimenters have observed chaotic behavior in mi-
crowave components. In most cases, they have worked
to avoid this mode of operation, because it appeared to
be uncontrolled. However, for short periods of time, the
performance of chaotic components is predictable and
controllable with minimal external stimuli. The goal now
is to use this characteristic in the design of electronic com-
ponents for system applications.

This short paper summarizes some observations of
chaos in both microwave components and larger systems;
it also presents specific observations in a PIN diode lim-
iting filter. The following four papers in this Digest
present an overview of the current understanding of how
chaotic techniques could be applied to microwave
applications.
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SOME OBSERVATIONS OF CHAOS

Microwave Components

Diodes connected to linear tuned circuits have dem-
onstrated chaotic behavior usually preceded by a bifur-
cation mode [1]. At the University of Kent, experiment-
ers reported this behavior in IMPATT oscillators [2] in
1990 and in Gunn oscillators [3] more recently. Varactor
diodes in linear circuits have been analyzed [4] and cha-
otic behavior observed [5,6]. PIN diodes have also been
observed to show period doubling and chaos when used
in a limiting filter configuration [7]. Nonlinear transmis-
sion-line resonators also show period-doubling bifurca-
tions, periodic spiking, and periodic self-pulsing [8].

Josephson junctions have been analyzed, yielding syn-
chronized oscillations and almost periodic oscillations
depending on dc and 1f levels [9] and mixing [10].

Some of the earliest observations of chaotic behavior
were of thermionic devices. Backward-wave amplifiers
and oscillator components demonstrated in 1983 and ear-
lier that high-power chaotic sources are available [11,12].
An analysis of a gyrotron has yielded self-modulated os~
cillation and period doubling [13].

Microwave Systems

Chaotic behavior arises because of the interaction of a
nonlinear device(s) with linear circuits under certain ex-
citation conditions. The quasi-optical array using low-
dimensional chaos controlled by the coupling strength
[14] is an example of chaotic behavior being used, not
avoided. Controlled chaos has been used for digital sig-
naling [15], and secure baseband communication has been
demonstrated [16]. Synchronized signals and baseband
systems have been demonstrated [17].

CHAOTIC BEHAVIOR IN A PIN DIODE

LIMITING FILTER

In 1992, Robert Tan at the Army Research Laboratory
first observed the chaotic response of a limiting filter (a
bandpass filter with a PIN diode at either the input or
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output port); some results have been reported in the lit-
erature [7]. This section extends the results with the em-
phasis on understanding the characteristic(s) of the di-
ode required to create chaotic behavior. Chaotic behav-
ior herein is defined as either bifurcation (period dou-
bling, etc) or chaos (broadband noise-like) signals. The
experiments were performed with a combline filter whose
response without a PIN diode at the output was centered
near 1.185 GHz, as shown in figure 1. This figure also
shows the filter response with the diode connected from
the output resonator’s high-impedance end to ground.
With the diode at the output, signals generated at the di-
ode could be observed over a broad frequency band on a
spectrum analyzer.

The experiments consisted of measuring the onset of
bifurcations and chaotic behavior as a function of tem-
perature. The diode’s low-frequency, current-voltage
characteristic was also measured at room, dry ice, and
liquid nitrogen temperatures (21, 78, and ~196 °C). The
onset of bifurcations {figure 2) and chaotic behavior (fig-
ure 3) was measured across the passband as a function of
temperature. Figure 4 give an example of the bifurcation
spectrum, and figure 5 shows the chaotic spectrum. In
general, the threshold for the bifurcations and chaotic
oscillations decreased as the temperature decreased.
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Figure 1. Response of combline filter with (upper curve)
and without (lower curve) PIN limiting diode. Cursor at
1.185 GHz.

The dependence of the threshold shift on temperature
was an unexpected result, since the forward current-volt-
age nonlinearity increases with decreasing temperature,
as shown in figure 6. I estimated the magnitude of the
voltage at the diode by noting the input power level
where third-harmonic signals were first observed; this
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Figure 2. Threshold of bifurcations across passband of filter

at three temperatures.
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Figure 3. Threshold of chaos across passband of filter at three

temperatures.
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Figure 4. Example of bifurcation spectrum with an input
signal at 1.185 GHz. Resolution bandwidth is 3 MHz.
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level is associated with the onset of the forward conduc-
tion curvature of the diode. I then scaled the onset volt-
age as the half-power of the input power and the voltage
standing wave ratio (VSWR). The onset voltage was esti-
mated to be larger than the voltage associated with the
curvature of the diode characteristic, but much less than
the breakdown voltage. Therefore the source of the ob-
served behavior appears to be the physics associated with
the negative-differential resistance when the diode is re-
verse biased [18,19]. Similar chaotic behavior in a varactor
diode has been attributed to recombination [20]. Further
experiments with PIN diodes are ongoing to reveal the
roles of nonlinearity, recombination, and diode structure
in such observations.

CONCLUSION

Chaotic behavior has been observed in many micro-
wave devices and systems, but additional details need to
be understood before the intentional use of chaos can be
incorporated into microwave systems.
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Figure 5. Example of a chaotic spectrum with an input
signal at 1.185 GHz. Resolution bandwidth is 3 MHz.
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Figure 6. Forward current-voltage characteristics of PIN
diode at 21 and -196 °C.
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